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GAS-GAS EQUILIBRIUM OF MIXTURES OF 
NOBLE GASES AT HIGH PRESSURES FROM A 

PERTURBATION THEORY 

S. LAGO*, P. PADILLA and M. REGUERO** 

Dpto. Quimica Fisica, Facultad de Ciencias Quimicas, 
Universidad Complutense. 28040 Madrid, Spain. 

(Received November 1988) 

An accurate version of thermodynamical perturbation theory is used to predict gas-gas immiscibility in a 
mixture of noble gases at high pressures. Critical temperatures and molar fractions are calculated for several 
densities and a region where dp JdT, is positive, is found. This region goes beyond the critical point of pure 
Xe showing gas-gas immiscibility. The possibility of this prediction requires an adequate rule to obtain 
crossed interaction parameters. In fact, Lorentz-Berthellot rule is unable to predict the phenomenon while 
a new rule proposed by Kohler gives a semiquantitative agreement. A critical exponent is also calculated. 
Computed value is very close to experimental exponent. A second plait-point not found experimentally is 
also predicted. 

KEY WORDS: Immiscibility, critical exponent. 

I INTRODUCTION 

The study of equilibrium of binary mixtures at high pressures is a subject which has 
been receiving increasing interest during the last few years’-3. This interest comes 
from their practical applications in Chemical Engineering as well as its theoretical 
relevance. In particular, the so-called gas-gas immiscibility namely the phase separa- 
tion above the critical point of the less volatile component of a mixture, has been 
described for a great number of systems since the pioneer work of Krichevski4. 
Krichevski’s experiments confirmed the theoretical predictions of Kammerlingh-Ones 
and Keesom’ formulated at the beginning of our century. Lately, classification of 
different types of binary mixtures’-2 has allowed to distinguish several kinds of 
gas-gas immiscibility and particularly that which appears in binary mixtures of noble 
gases of very different molecular weight, experimentally studied by Trappeniers 
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46 S. LAGO, P. PADILLA AND M. REGUERO 

et al.6-7 These mixtures belong to the class 111 in the Scott-van Konynenburg 
scheme.2 This kind of mixtures, due to their molecular simplicity could be object both 
either of theoretical studies or of simulations in a systematic way. However, the 
achievement of these studies always encounters important practical difficulties. On the 
first place, correlation lengths between particles increase when the mixture ap- 
proaches a critical point and, therefore, the boxes of very short length used in 
simulations are inadequate near the critical lines. Even so, there are valuable 
simulations of mixtures of noble gases at high p r e s s ~ r e d - ~  but these results must be 
carefully considered in the vicinity of phase separation. On the other hand, some other 
difficulties appear from a theoretical point of view. The task of calculating gas-gas 
phase equilibrium in binary mixtures from standard integral equations as Percus- 
Yevick equation" or the more recent RHNC equation" seems to be too far of any 
reasonable availability of computational time in the most advanced computers. 
Furthermore, there is the problem of crossed interaction since for molecules of so 
different sizes and well depths as neon and xenon, or neon and krypton, crossed 
parameters may be very far from the Lorentz-Berthellot combination classical rules. 
As we shall show below, the problem of combination rules becomes crucial and we 
shall be able to overcome i t  with help of a recent proposal of Kohler et This 
treatment has already shown to be valid for relatively simple fluids at low pressures 
using either a van der Waals one-fluid (vdWlf)" theory or a perturbation theory13. 
vdWlf theory gives for a lot of cases results of similar quality than those arising from 
perturbation theory. The advantage of vdWlf theory is its major simplicity and less 
computational time. Unfortunately, vdWlf theory is inapplicable in the case of 
mixtures of noble gases of very different sizes. This size difference is not so critical for 
perturbation theories. Moreover, because of gas-gas equilibrium occurs at densities 
comparable to those of liquid-liquid equilibrium, the main failure of perturbation 
theories which is their inability to predict the low density branch in the gas-liquid 
equilibrium using only the first order perturbation term, is avoided. So, the main 
purpose of this paper is to examine whether a very accurate version of perturbation 
theories for mixtures proposed by Fischer and I,ago14 could predict, at least in a 
semiquantitative way, the gas-gas equilibrium for a system without multipolar 
interactions like neon-xenon. As we shall show, this is the case when Kohler 
combination rule is used for the crossed interaction. Thus, Section I1 is devoted to a 
brief exposure of the thermodynamical as well as statistical basis of our work and 
presents an introduction to combination rules. Since perturbation theories yield 
directly Helmholtz free energy, A ,  the most of our computations has been made on the 
thermodynamical surface ( A ,  c', x) where Rowlinson's thermodynamical formulation 
is available' and not on the ( G ,  p ,  x) surface more adequate to experimental work. In 
this way, we have been able to avoid in a large scale the errors coming from numerical 
derivation which could darken the results of our work. Section 111 displays our 
numerical results, making a special emphasis on the different curves which define 
phase equilibria and computing, moreover, the critical exponent of the variation of 
instability molar fraction with the temperature around a critical point. The paper 
closes with some remarks about the future of perturbation theory concerning gas-gas 
equilibrium what constitutes section IV. 
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Figure 1 
temperat ure. 

Variation of molar Helmholtz energy of a mixture with molar fraction below a critical 

IIA THERMODYNAMICS O F  A MIXTURE OF GASES 

As we have indicated above and due to the fact that we shall apply a perturbation 
theory where the quantity directly obtained is the Hemholtz free energy, A ,  we shall 
discuss the behaviour of the system on an isochore section of the (a ,  v,  x) surface at 
constant temperature, T. Small letters design, as usual, molar quantities. 

Stability of a binary mixture, whose components are denoted by subscripts 1 and 2, 
by composition fluctuations requires: 

(a2aM/a2x2), , , (a2aM/auZ)~, , - (a2aM/axdv)t,., > o (1) 

(2) 

Thus, the states of the system corresponding to the part of the curve in the Figure 1 
between B and C will be instable because any fluctuation in the composition leads to a 
decrease in aM and, therefore, to a spontaneous decomposition of the system in two 
phases. Points A and D correspond to two phases of composition x' and x", which are 

where aM is the mixing Helmholtz energy defined as: 

aM = a - ( x , a ,  + x z a z )  
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48 S. LAGO, P. PADILLA A N D  M. REGUERO 

not in thermodynamical equilibrium because they correspond to different pressures. We 
call those quantities, instability molar fractions (IMF). However, quite obviously: 

(3) (duM/ax):, 7 = (aaM/ax): T 

( w a x ) " ,  T = (W/W,, T 

Furthermore, we have the thermodynamical identity2*' 5 :  

(4) 

where p is the pressure of the system with molar volume u, molar fraction x and 
temperature T. In principle, the pressure of the minima could be obtained and a 
complete phase diagram for each composition be drawn solving the equations: 

p' = p" ( 5 )  

P i  = 4 ( 6 )  

P i  = P; (7) 

Unfortunately, this goal is also too ambitious for a stringent perturbation theory and 
we should resign to obtain the critical line. In fact, if our system in the Figure 1 is 
heated, keeping equal the volume of the two phases adjusting conveniently the 
pressure, the system reaches a critical state at  the temperature T, where intensive 
properties in both phases are the same. For coexisting phases near a critical point the 
following relation is found: 

In Ix' - x"1 = f l  In1 T - T,I + C (8) 

Theoretical classical treatment of binary mixtures'' leads to a value for critical 
exponent /j = 1/2 while a value of f l  = 0.35 f 0.02 has been experimentally obtained7. 
This treatment is based on the expansion of chemical potential around a critical point, 
supposed 14 is an analytical function. Following Hansen and McDonald16 we can 
expand the molar Helmholtz free energy, u, taking as independent variables T and x 
on surfaces where p = constant. We obtain retaining only the first non vanishing 
terms: 

AU = u - = a , , A T  + c.tl A T A X  + a03(AX)3 (9) 

where the subscript c refers to the critical line A T  = T - T,, Ax = x - x c ,  and the 
coefficients r i j  are given by: 

a . .  = ( ~ ' + j ~ / ~ T ' d x ' ) ,  (10) 

We can immediately write from Eq. (9): 

Aa AT 
A.Y Ax 

x ~ ~ ( A x ) ~  = - - t l lo  ~ - a , , A T  

In the limit A T  -+ 0 the first two members of the right side vanish since: 

Au 
lim - = (?u/dx) ,  = 0 
A7-0 A x  
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GAS-GAS EQUILIBRIUM FROM PERTURBATION THEORY 49 

and : 

Thus, Eq. ( 1  1 )  reduces to: 

A.x = + C ( A T ) ” ’  (14) 

where C2 = - s ( ,  , / ro3 

respect to x = x, in the vicinity of critical point. Therefore: 
In this case, the critical exponent is also p = f and critical curve is symmetric 

(15) XI - x, = -(x” - x,) 

x’ + x” = 2x, = constant 

or: 

(16) 

which is a special case of the law of rectilinear diameters. I t  must be remarked that 
molar fraction in formulae (8) and (16) are not necessarily the same because they 
correspond to coexistence molar fraction in the first case and to IMF in the second 
one but classical critical exponents have the same numerical value. 

At  the critical point the Eq. ( 1 )  must vanish and the derivative of pressure, 
corresponding to the second crossed derivative of free energy must also vanish: 

(dplSx),, = 0 (17)  
where the subscript CR means that the derivative is taken on the critical line. Now, we 
approach this derivative by: 

( ? P P X ) , > . T  = 0 (18) 

and the Eq. ( 1  ) is reduced to: 

(S2am/?xZ), ,  = 0 

on a pseudocritical point. Thus, we shall take as an approximate test of stability of a 
mixture the equation: 

(J2am/dx2)  > O ( 2 0 )  

IIB THE FLAVOUR O F  STATISTICAL THERMODYNAMICS 

We shall use a first order WCA perturbation theory” for a binary mixture to obtain 
their thermodynamical properties. Details of the method and numerical treatment of 
resulting equations have been given elsewhereI4 and we shall simply outline here the 
main expressions. 

All the pair interactions in the mixture are supposed to be Lennard-Jones 
interactions. Each actual potential ui j ( r )  is split in the way: 

( 2 1 )  u . .  IJ = UP. I J  + u! .  I J  
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50 S. LAGO, P. PADILLA AND M. REGUERO 

where the explicit dependence on r has been supressed for sake of simplicity. Reference 
and perturbations potentials are defined as: 

- E i j  

ui j 

r i j  < 21‘6aij 
ri j  > 21!6aij 

respectively. 

potential gives: 
Taylor’s expansion of Helmholtz free energy considered as a functional of pair 

where: 

and the script o means properties of reference system and the star means difference 
with ideal value. The reference system reduces to a mixture of soft repulsive spheres for 
a mixture of noble gases as studied here. 

Radial distribution functions, g:, for our system are obtained by solving the 
Percus-Yevick equation with Baxter’s formalism. Helmholtz energy of the reference 
system is obtained through a new series expansion around a system composed by a 
mixture of hard spheres: 

where B are the “blip” integrals defined as: 

B,, = (exp( - Pu,”,) - exp( - Bu,os))y,os(r)dr (27) I 
Now, superscript H refers to properties of a mixture of hard spheres. yo is the 
background correlation function defined as: 

Y:, = 9:p exp(Bu$) (28) 

The choice of hard sphere diameters is not unique and several procedures has been 
p r ~ p o s e d ’ ~ . ‘ ~ .  We choose diameters d ,  and d , ,  which fulfills: 

E l l  = O  (29) 

B , ,  = 0 (30) 
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GAS-GAS EQUILIBRIUM FROM PERTURBATION THEORY 51 

and we suppose additive the hard sphere diameter to be able to apply an accurate 
equation of ~ t a t e ’ ~ . ~ ’  in this case. With all these conditions, we rewrite (24) in final 
form as: 

B A ~ / N  = BAZ/N + xlx2  j ( e x p ( - ~ u ~ ~ )  - exp(-~uy,))yy,(r)dr 

+ B P P  1 xuxp ju:p(r)s:p(r)dr  (31) 
01. P 

which is already satisfactory for our purposes. 

IIC THE CROSSED INTERACTION 

In a general way and as we shall show below, thermodynamical properties of a 
mixture depend strongly on crossed interaction by a potential law similar to the 
interactions for pure substances with crossed interaction parameters given by: 

For 5 = 7 = 1, we have the Lorentz-Berthellot combination rule, but experimental 
and simulation values show that both parameters and expecially 5 differs from 1. A lot 
of possible combination rules and their influence on the thermodynamical properties 
have been exhaustively studied by Diaz Peiia and Pando”. We shall use here one, 
recently proposed by Kohler et a1.12, which does not contain any adjustable 
parameters what makes it quite satisfactory from a theoretical point of view. This rule 
is based on the fact that intermolecular dispersion forces could be expressed by 
London formula22: 

(34) u$’P(r) = -$(aiai)/r6(2hvihvj/(hvi + hvj)  

where h is Plank’s constant, v a characteristic frequency of the molecule and a its 
polarizability. For the (12-6) potential: 

uij(r)  = 4eij((0ij/r)1z - ( ~ ~ ~ / r ) ~ )  

E ~ ,  = &aiaj /a~{2hvihv j / (hv i  + hv,)) 

(35) 
the dispersion energy at the minimum is exactly twice the depth of potential well, since 
this minimum is situated at 2”6aij: 

(36) 
Moreover, this rule supposes additive the hard sphere diameters given by BHO 

version of Barker-Henderson perturbation theoryz3: 

d..  = (1 - exp(-Buz))dr jom (37) 

namely: 
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52 S. LAGO, P. PADILLA A N D  M. REGUERO 

Equations (36) to (38) constitute a system from which e I 2  and cI2 can be obtained 
by successive iterations using interactions parameters and polarizabilities of pure 
substances. 

As we have pointed out this rule is perfectly adequate to our goal not only by the 
lack of adjustable parameters but also by the definition of molecular diameters based 
on perturbation theories and, furthermore, by the supposition of additivity of these 
diameters which is necessary to use the MCSLB equation of ~ t a t e ' ~ . ~ ' .  

Il l  NUMERICAL RESULTS 

Intermolecular parameters for pure Ne and Xe are shown in the two first rows of 
Table 1. As it has been pointed out above, calculated excess properties depend 
strongly on combination rules. However. Figure 2 shows that the excess volume of the 
studied mixture, VE,  goes to 0 when pressure becomes large, using any rule. Pressure 
has been obtained from the thermodynamical relation : 

using the derivation formula proposed by Marshall and Jones24 which is very 
accurate for the central part of the interval of derivation but it yields some error on the 
interval extrema. At low pressures the difference between the V E  predicted by both the 

20 

0 

\ 6 10 

x 
u 
> 

0 

Figure 2 

I I I I 

Xe + Ne 
T = 270 K 
X(Ne) =0,6 

- (. K 

5 00 1000 1500 2000 
P I  bar 

Variation of excess volume with pressure for the combination rules in this work. LB = Lorentz 
Berthellot rule; K = Kohler rule. 
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rules is large but i t  is irrelevant at high pressures. Neither A E  nor G E  go to zero when 
the pressure increases but to a constant value for density and temperature: 

G E  = V E d p  (40) s 
In the most of cases, we have solved the PY equation for a molar fraction grid of 

0.05, keeping constant the total particle density in the mixture, and calculating the 
excess Helmholtz energy: 

(41) 

Reduced critical temperature for a pure substance calculated from WCA theory25 is 
T* = 1.458 and the corresponding temperature for Xe is T,(Xe) = 335 K. Therefore, 

A E = A * - x  Ne A* Ne - x  Xe A* Xe 

0 1  

- AM 
NKT 

0 

-0 1 

-0.2 

-0.: 

p = 0 012 
T = 270 K 

K 

Ne +Xe 

0.2 O L  0.6 0.8 
X (Nel 

Figure3 
Symbols as in Figure 2. 

Variation of molar Helmholtz energy with molar fraction at 270K and p = 1.2.10-* A - 3 .  
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- AM 
NKT 

0 11 

I 

-0.11 

-0 2 

-0 31 

Table 1 Intermolecular potential parameters 
(LB = Lorentz-Berthellot rule, K = Kohler's 
rule). 

Interaction TIK (&lk)lK a1A 

Ne- Ne ~ 35.58 2.748 
Xe-Xe - 229.9 3.974 
Ne-Xe (LB) ~ 90.44 3.361 
Ne-Xe (K) 270 25.20 3.593 

I I I 1 

p = 0 0 1 2  A-3 Ne + Xe 

X ( N e )  0 2  C C  06 

Figure 4 Id. as in Figure 3 but for several temperatures, using only Kohler's rule. 
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at high densities and T = 270 K we should expect a vapour-liquid phase separation 
corresponding to experiment. Figure 3 shows that it is really the case when Kohler's 
combination rule is applied but not for Lorentz-Berthellot rule. For this system and 
this temperature, crossed interaction parameters given by the two rules are very 
different as Table 1 shows. Thus, the simple Lorentz-Berthellot rule shows their 
unadequacy to predict, even qualitatively, gas-gas separation and, hereinafter, we 
shall only show results obtained from Kohler's rule. Figures 4 to 6 display the 
behaviour of A'" for different densities. It seems that critical temperature of separation 
firstly increases when density increases and lastly decreases. IMFs can be calculated 
from minima in A M  curves and they are displayed on Table 2. These IMF agree well 
with the Eq. (16) in the neighborhood of the critical point where perturbation results 
are likely worse. 

0 I C  

AM 
N K T  

0 

-0 1[ 

-0 2( 

-0 3 

I I I I 

p 0 008 A-' :,e-Xe 

Figure 5 Id. as in Figure 4 but for density p = 8 .  
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-0.1c 

-0.2c 
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771- 1 
- p =0015 A'' Ne-Xe 1 

T =2LO K 

0.2 O L  0 6  
X ( N e )  

Figure6 Id. as in Figure 4 but for density p = 1 . 5 .  l o -*  k.'. 

The difference of IMFs has been fitted to equations of type (8) to obtain the best 
correlation coefficient and thence T, and fl .  As Figure 7 shows an excellent fitting can 
be reached and instability isochore curves have been recalculated from these values. 
Figure 8 shows that the calculated curves for two densities agree fairly well with our 
previous estimations except very near of the critical point. Table 3 shows the critical 
constants calculated for different densities. Agreement of the critical exponent with 
experiment' ( p  = 0.35 k 0.02) seems to be excellent at mean densities and to fail 
completely at  higher densities. Although classical exponents are the same for 
coexistence fraction and IMF, the experimental exponents might not be the same and 
the agreement could be ony accidental. Moreover, PY equation yields classical 
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Table 2 Instability molar fractions as 
obtained from perturbation theory. 

X” X pIA- ’  TJK x‘ 
0.006 

0.007 

0.008 

0.010 

0.012 

0.013 

0.015 

190 
210 

190 
210 
230 
250 

230 
240 
250 
270 

270 
290 
320 
335 

250 
270 
280 
300 
3 20 
340 

270 
290 
310 
3 20 

240 
250 
260 
270 

0.1320 0.8477 
0.2276 0.7787 

0.0709 0.9108 
0,1094 0.8739 
0.1673 0.8196 
0.3159 0.7479 

0.0994 0.8838 
0.1 183 0.8632 
0.1 595 0.8484 
0.2205 0.7810 

0.1109 0.8844 
0.1553 0.8406 
0.2557 0.7404 
0.3320 0.6481 

0.072 0.931 
0.102 0.923 
0.1 17 0.902 
0.158 0.863 
0.203 0.799 
0.317 0.773 

0.1170 0.9262 
0.1538 0.8808 
0.1921 0.8279 
0.2120 0.7280 

0.1421 0.9415 
0.1572 0.9326 
0.1703 0.9233 
0.1856 0.8907 

0.488 
0.503 

0.49 1 
0.492 
0.493 
0.532 

0.492 
0.49 1 
0.504 
0.501 

0.498 
0.498 
0.498 
0.490 

0.502 
0.512 
0.510 
0.51 1 
0.501 
0.545 

0.522 
0.517 
0.510 
0.470 

0.542 
0.545 
0.547 
0.538 

exponentsz6 and the only way to change this conclusion is through the perturbation 
term which is too unaccurate to give us a definitive conclusion. 

As critical temperatures and molar fractions for each density have been obtained, 
we have made a finer division of densities to determine the pressure according to Eq. 
(39) obtaining the critical pressures which also appear in Table 3. The phase diagram 
built from critical pressures and temperatures is qualitatively wrong in several aspects. 
This diagram shows two double plait-points, one of them at low pressure (low 
densities) where first order perturbation theories hardly work and whose coordinates 
are difficult to estimate and a second one at about 370 K, above the experimental as 
long as the calculated critical point of pure Xe. Therefore, first order perturbation 
theory truly predicts gas-gas immiscibility but this second double plait-point, which is 
predicted by the most of theories2’, has not found by Trappeniers et d2* even at very 
high pressures. 
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I-1 r--- 

30 3 5  LO L 5  
In ITc-T I  

Fitting of differences between instability molar fractions versus differences with critical tempera- 

IV CONCLUDING REMARKS 

Results obtained in this work clearly show that a first order perturbation theory using 
pair potentials not including multipolar interactions is able to predict the gas-gas 
immiscibility. This conclusion is~elevant because the most of theories previously used 
had a markedly empirical character. It also seems clear that the prediction of this 
separation depends strongly on the fact that the crossed interaction is described in a 
proper way. Simple Lorentz-Berthellot rule is totally inadequate in this case. 

is positive 
between them. Experimental results give also a branch with dp, /dT,  > 0. Moreover, 
theoretical branch goes above the critical point of the Xe giving origin to gas-gas 
immiscibility. However, the second plait-point which some theories else also predict2’, 
has not been experimentally found. In fact, although Trappeniers et have 
extended their previous measurements to 20 kbar, this second double plait-point has 
never observed. These authors pointed out that melting curve perhaps meets critical 
curve below this critical point, but in any case discrepancies between theory and 
experiment would be extremely large. Possible improvements might get by giving a 
major role to attractive forces either by the introduction of a second order perturba- 
tion term or by a different potential splitting with a less repulsive reference term. This 

Calculated phase diagram shows two double plait-points and dpJd 
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Figure 8 Instability molar fractions versus temperature as calculated from parameters from Figure 7. 

second way is simpler and gives better results on a larger range of densities and 
temperatures at low pressures23 using perturbation theories. We are currently 
working in this direction, but our present feeling is that a quantitative prediction of 
gas- gas separation of phase equilibria at high pressure goes beyond the applicability 
of usual perturbation theories. Nevertheless, the situation seems not to be so extreme 
as in the detonation regime where these theories completely fail2' but perturbation 
theories should be used very cautiously in this regime of mean temperatures and high 
densities. 

In principle, spinodal line of material instability could also be obtained but due to 
difficulty of calculating these points in an accurate way, very large computational time 

Table 3 Critical constants of the mixtures N e  + X e  

0.0119 0.164 50.6 
0.0060 0.0826 100.4 
0.0070 0.0964 86.0 
0.0080 0.176 75.3 
0.0100 0.219 60.2 
0.0120 0.261 50.2 
0.0130 0.280 46.3 
0.0150 0.314 40. I 

335 9.54 0 
215 5 14.0 0.488 
255 f 5 16.8 0.492 0.345 
295 f 5 35.0 0.495 0.345 
340 5 62.7 0.498 0.340 
355 f 5 95.5 0.507 0.335 
325 f 5 99.9 0.516 0.185 
280f 5 113.1 0.543 0.089 
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should be required and this seems not to be worth, given the poor agreement with 
experiment at these pressures. 
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